Fill elements.
Matrix multiplication.
Get an element.
Set an element.
operation and assign an element.
Operation and assign other vector.
Swap 2 rows.
Matrix pointer.
Initialize by row major elements.
Create rotation X matrix.
Create rotation Y matrix.
Create rotation Z matrix.
Create scale matrix.
Create translate matrix.
Initialize unit matrix.
import std.math : isClose; immutable m = Matrix!(2, 3).fromRows([ [1, 2, 3], [4, 5, 6], ]); assert(m.rows == 2); assert(m.columns == 3); assert(m[0, 0].isClose(1)); assert(m[0, 1].isClose(2)); assert(m[0, 2].isClose(3)); assert(m[1, 0].isClose(4)); assert(m[1, 1].isClose(5)); assert(m[1, 2].isClose(6));
import std.math : isClose; immutable m = Matrix!(3, 3).unit; assert(m.rows == 3); assert(m.columns == 3); assert(m[0, 0].isClose(1)); assert(m[0, 1].isClose(0)); assert(m[0, 2].isClose(0)); assert(m[1, 0].isClose(0)); assert(m[1, 1].isClose(1)); assert(m[1, 2].isClose(0)); assert(m[2, 0].isClose(0)); assert(m[2, 1].isClose(0)); assert(m[2, 2].isClose(1));
import std.math : isClose; auto m = Matrix!(2, 2).fromRows([ [1, 2], [3, 4] ]); m[0, 0] = 3.0f; m[0, 1] = 4.0f; m[1, 0] = 5.0f; m[1, 1] = 6.0f; assert(m[0, 0].isClose(3)); assert(m[0, 1].isClose(4)); assert(m[1, 0].isClose(5)); assert(m[1, 1].isClose(6));
import std.math : isClose; auto m = Matrix!(2, 2).fromRows([ [1, 2], [3, 4] ]); m[0, 0] += 1.0f; m[0, 1] += 1.0f; m[1, 0] += 1.0f; m[1, 1] += 1.0f; assert(m[0, 0].isClose(2)); assert(m[0, 1].isClose(3)); assert(m[1, 0].isClose(4)); assert(m[1, 1].isClose(5));
import std.math : isClose; auto m = Matrix!(2, 2).fromRows([ [1, 2], [3, 4] ]); immutable t = Matrix!(2, 2).fromRows([ [3, 4], [5, 6] ]); m += t; assert(m[0, 0].isClose(4)); assert(m[0, 1].isClose(6)); assert(m[1, 0].isClose(8)); assert(m[1, 1].isClose(10));
import std.math : isClose; auto result = Matrix!(2, 2)(); immutable lhs = Matrix!(2, 3).fromRows([ [3, 4, 5], [6, 7, 8], ]); immutable rhs = Matrix!(3, 2).fromRows([ [3, 4], [6, 7], [8, 9], ]); result.mul(lhs, rhs); assert(result[0, 0].isClose(3 * 3 + 4 * 6 + 5 * 8)); assert(result[0, 1].isClose(3 * 4 + 4 * 7 + 5 * 9)); assert(result[1, 0].isClose(6 * 3 + 7 * 6 + 8 * 8)); assert(result[1, 1].isClose(6 * 4 + 7 * 7 + 8 * 9));
import std.math : isClose; auto m = Matrix!(2, 2)(); m.fill(1.0); assert(m[0, 0].isClose(1.0)); assert(m[0, 1].isClose(1.0)); assert(m[1, 0].isClose(1.0)); assert(m[1, 1].isClose(1.0));
import std.math : isClose; immutable m = Matrix!(2, 2)([[1, 2], [3, 4]]); assert(isClose(*(m.ptr), 1.0));
import std.math : isClose; immutable m = Matrix!(4, 4).scale(2.0, 3.0, 4.0); assert(m[0, 0].isClose(2.0)); assert(m[1, 1].isClose(3.0)); assert(m[2, 2].isClose(4.0)); assert(m[3, 3].isClose(1.0)); foreach (i; 0 .. 4) { foreach (j; 0 .. 4) { if (i != j) { assert(m[i, j].isClose(0.0)); } } }
import karasux.linear_algebra.vector : isClose; immutable m = Matrix!(4, 4).translate(2.0, 3.0, 4.0); immutable v = Vector!4([1.0, 2.0, 3.0, 1.0]); auto result = Vector!4(); result.mul(m, v); assert(result.isClose(Vector!4([3, 5, 7, 1])));
import karasux.linear_algebra.vector : isClose; immutable m = Matrix!(4, 4).rotateX(0.5); immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]); immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]); immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]); auto result = Vector!4(); result.mul(m, x); assert(result.isClose(x)); result.mul(m, y); assert(result.isClose(Vector!4([0.0, cos(0.5), sin(0.5), 1.0]))); result.mul(m, z); assert(result.isClose(Vector!4([0.0, -sin(0.5), cos(0.5), 1.0])));
import karasux.linear_algebra.vector : isClose; immutable m = Matrix!(4, 4).rotateY(0.5); immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]); immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]); immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]); auto result = Vector!4(); result.mul(m, x); assert(result.isClose(Vector!4([cos(0.5), 0.0, -sin(0.5), 1.0]))); result.mul(m, y); assert(result.isClose(y)); result.mul(m, z); assert(result.isClose(Vector!4([sin(0.5), 0.0, cos(0.5), 1.0])));
import karasux.linear_algebra.vector : isClose; immutable m = Matrix!(4, 4).rotateZ(0.5); immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]); immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]); immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]); auto result = Vector!4(); result.mul(m, x); assert(result.isClose(Vector!4([cos(0.5), sin(0.5), 0.0, 1.0]))); result.mul(m, y); assert(result.isClose(Vector!4([-sin(0.5), cos(0.5), 0.0, 1.0]))); result.mul(m, z); assert(result.isClose(z));
Matrix structure.