Matrix

Matrix structure.

Members

Functions

fill
typeof(this) fill(const(E) value)

Fill elements.

mul
typeof(this) mul(const(Matrix!(ROWS, N, E1)) lhs, const(Matrix!(N, COLS, E2)) rhs)

Matrix multiplication.

opIndex
const(E) opIndex(size_t i, size_t j)

Get an element.

opIndexAssign
const(E) opIndexAssign(const(E) value, size_t i, size_t j)

Set an element.

opIndexOpAssign
const(E) opIndexOpAssign(const(E) value, size_t i, size_t j)

operation and assign an element.

opOpAssign
typeof(this) opOpAssign(const(typeof(this)) value)

Operation and assign other vector.

swapRows
void swapRows(size_t row1, size_t row2)

Swap 2 rows.

Properties

columns
size_t columns [@property getter]
Undocumented in source. Be warned that the author may not have intended to support it.
ptr
const(E)* ptr [@property getter]

Matrix pointer.

rows
size_t rows [@property getter]
Undocumented in source. Be warned that the author may not have intended to support it.

Static functions

fromRows
typeof(this) fromRows(const(E)[COLS][ROWS] elements)

Initialize by row major elements.

rotateX
typeof(this) rotateX(E theta)

Create rotation X matrix.

rotateY
typeof(this) rotateY(E theta)

Create rotation Y matrix.

rotateZ
typeof(this) rotateZ(E theta)

Create rotation Z matrix.

scale
typeof(this) scale(Factors factors)

Create scale matrix.

translate
typeof(this) translate(Factors factors)

Create translate matrix.

unit
typeof(this) unit()

Initialize unit matrix.

Parameters

ROWS

matrix rows.

COLS

matrix columns.

E

element type.

Examples

import std.math : isClose;

immutable m = Matrix!(2, 3).fromRows([
    [1, 2, 3],
    [4, 5, 6],
]);
assert(m.rows == 2);
assert(m.columns == 3);

assert(m[0, 0].isClose(1));
assert(m[0, 1].isClose(2));
assert(m[0, 2].isClose(3));
assert(m[1, 0].isClose(4));
assert(m[1, 1].isClose(5));
assert(m[1, 2].isClose(6));
import std.math : isClose;

immutable m = Matrix!(3, 3).unit;
assert(m.rows == 3);
assert(m.columns == 3);

assert(m[0, 0].isClose(1));
assert(m[0, 1].isClose(0));
assert(m[0, 2].isClose(0));
assert(m[1, 0].isClose(0));
assert(m[1, 1].isClose(1));
assert(m[1, 2].isClose(0));
assert(m[2, 0].isClose(0));
assert(m[2, 1].isClose(0));
assert(m[2, 2].isClose(1));
import std.math : isClose;

auto m = Matrix!(2, 2).fromRows([
    [1, 2],
    [3, 4]
]);
m[0, 0] = 3.0f;
m[0, 1] = 4.0f;
m[1, 0] = 5.0f;
m[1, 1] = 6.0f;

assert(m[0, 0].isClose(3));
assert(m[0, 1].isClose(4));
assert(m[1, 0].isClose(5));
assert(m[1, 1].isClose(6));
import std.math : isClose;

auto m = Matrix!(2, 2).fromRows([
    [1, 2],
    [3, 4]
]);
m[0, 0] += 1.0f;
m[0, 1] += 1.0f;
m[1, 0] += 1.0f;
m[1, 1] += 1.0f;

assert(m[0, 0].isClose(2));
assert(m[0, 1].isClose(3));
assert(m[1, 0].isClose(4));
assert(m[1, 1].isClose(5));
import std.math : isClose;

auto m = Matrix!(2, 2).fromRows([
    [1, 2],
    [3, 4]
]);
immutable t = Matrix!(2, 2).fromRows([
    [3, 4],
    [5, 6]
]);

m += t;

assert(m[0, 0].isClose(4));
assert(m[0, 1].isClose(6));
assert(m[1, 0].isClose(8));
assert(m[1, 1].isClose(10));
import std.math : isClose;

auto result = Matrix!(2, 2)();
immutable lhs = Matrix!(2, 3).fromRows([
    [3, 4, 5],
    [6, 7, 8],
]);
immutable rhs = Matrix!(3, 2).fromRows([
    [3, 4],
    [6, 7],
    [8, 9],
]);

result.mul(lhs, rhs);

assert(result[0, 0].isClose(3 * 3 + 4 * 6 + 5 * 8));
assert(result[0, 1].isClose(3 * 4 + 4 * 7 + 5 * 9));
assert(result[1, 0].isClose(6 * 3 + 7 * 6 + 8 * 8));
assert(result[1, 1].isClose(6 * 4 + 7 * 7 + 8 * 9));
import std.math : isClose;

auto m = Matrix!(2, 2)();
m.fill(1.0);

assert(m[0, 0].isClose(1.0));
assert(m[0, 1].isClose(1.0));
assert(m[1, 0].isClose(1.0));
assert(m[1, 1].isClose(1.0));
import std.math : isClose;

immutable m = Matrix!(2, 2)([[1, 2], [3, 4]]);
assert(isClose(*(m.ptr), 1.0));
import std.math : isClose;

immutable m = Matrix!(4, 4).scale(2.0, 3.0, 4.0);
assert(m[0, 0].isClose(2.0));
assert(m[1, 1].isClose(3.0));
assert(m[2, 2].isClose(4.0));
assert(m[3, 3].isClose(1.0));

foreach (i; 0 .. 4)
{
    foreach (j; 0 .. 4)
    {
        if (i != j)
        {
            assert(m[i, j].isClose(0.0));
        }
    }
}
import karasux.linear_algebra.vector : isClose;

immutable m = Matrix!(4, 4).translate(2.0, 3.0, 4.0);
immutable v = Vector!4([1.0, 2.0, 3.0, 1.0]);
auto result = Vector!4();
result.mul(m, v);

assert(result.isClose(Vector!4([3, 5, 7, 1])));
import karasux.linear_algebra.vector : isClose;

immutable m = Matrix!(4, 4).rotateX(0.5);
immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]);
immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]);
immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]);

auto result = Vector!4();
result.mul(m, x);
assert(result.isClose(x));
result.mul(m, y);
assert(result.isClose(Vector!4([0.0, cos(0.5), sin(0.5), 1.0])));
result.mul(m, z);
assert(result.isClose(Vector!4([0.0, -sin(0.5), cos(0.5), 1.0])));
import karasux.linear_algebra.vector : isClose;

immutable m = Matrix!(4, 4).rotateY(0.5);
immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]);
immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]);
immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]);

auto result = Vector!4();
result.mul(m, x);
assert(result.isClose(Vector!4([cos(0.5), 0.0, -sin(0.5), 1.0])));
result.mul(m, y);
assert(result.isClose(y));
result.mul(m, z);
assert(result.isClose(Vector!4([sin(0.5), 0.0, cos(0.5), 1.0])));
import karasux.linear_algebra.vector : isClose;

immutable m = Matrix!(4, 4).rotateZ(0.5);
immutable x = Vector!4([1.0, 0.0, 0.0, 1.0]);
immutable y = Vector!4([0.0, 1.0, 0.0, 1.0]);
immutable z = Vector!4([0.0, 0.0, 1.0, 1.0]);

auto result = Vector!4();
result.mul(m, x);
assert(result.isClose(Vector!4([cos(0.5), sin(0.5), 0.0, 1.0])));
result.mul(m, y);
assert(result.isClose(Vector!4([-sin(0.5), cos(0.5), 0.0, 1.0])));
result.mul(m, z);
assert(result.isClose(z));

Meta