1 /**
2 Matrix LU decomposition module.
3 */
4 module karasux.linear_algebra.lu;
5 
6 import std.algorithm : swap;
7 import std.traits : isNumeric;
8 
9 import karasux.linear_algebra.matrix : Matrix;
10 import karasux.linear_algebra.vector : Vector;
11 
12 @safe:
13 
14 /**
15 LU decomposition matrices.
16 */
17 struct LUDecomposition(size_t N, E) if (isNumeric!E)
18 {
19     /**
20     Matrix type.
21     */
22     alias Mat = Matrix!(N, N, E);
23 
24     /**
25     Vector type.
26     */
27     alias Vec = Vector!(N, E);
28 
29     @disable this();
30 
31     /**
32     Initialize by matrix.
33 
34     Params:
35         m = target matrix.
36     */
37     this()(auto scope ref const(Mat) m) @nogc nothrow pure scope
38     {
39         m.createPivots(this.pivot_);
40 
41         Mat swapped;
42         foreach (i, pos; pivot_)
43         {
44             foreach (j; 0 .. N)
45             {
46                 swapped[pos, j] = m[i, j];
47             }
48         }
49 
50         swapped.createLUDecomposition(this.l_, this.u_);
51     }
52 
53     /**
54     Create inverse matrix.
55 
56     Params:
57         dest = destination matrix.
58     Returns:
59         destination matrix reference.
60     */
61     ref Mat createInverse(return scope ref Mat dest) const @nogc nothrow pure scope
62     {
63         Mat inverseL;
64         l_.inverseLMatrix(inverseL);
65 
66         Mat inverseU;
67         u_.inverseUMatrix(inverseU);
68 
69         Mat inverseLUP;
70         inverseLUP.mul(inverseU, inverseL);
71 
72         foreach (i; 0 .. N)
73         {
74             foreach (j; 0 .. N)
75             {
76                 dest[i, j] = inverseLUP[i, pivot_[j]];
77             }
78         }
79 
80         return dest;
81     }
82 
83     /**
84     Create inverse matrix.
85 
86     Returns:
87         destination matrix reference.
88     */
89     Mat createInverse() const @nogc nothrow pure scope
90     {
91         Mat dest;
92         return createInverse(dest);
93     }
94 
95     /**
96     Solve equation.
97 
98     Params:
99         y = equation Y.
100         x = solved X.
101     Returns:
102         reference to X.
103     */
104     ref Vec solve()(auto scope ref const(Vec) y, return scope ref Vec x) const @nogc nothrow pure scope
105     {
106         Vec swapped;
107         foreach (i, pos; pivot_)
108         {
109             swapped[i] = y[pos];
110         }
111 
112         Vec a;
113         l_.solveByLMatrix(swapped, a);
114         u_.solveByUMatrix(a, x);
115         return x;
116     }
117 
118     /**
119     Solve equation.
120 
121     Params:
122         y = equation Y.
123     Returns:
124         solved X.
125     */
126     Vec solve()(auto scope ref const(Vec) y) const @nogc nothrow pure scope
127     {
128         Vec x;
129         return solve(y, x);
130     }
131 
132 private:
133     Mat l_;
134     Mat u_;
135     size_t[N] pivot_;
136 }
137 
138 /**
139 Construct LU decomposition matrices.
140 
141 Params:
142     N = dimensions.
143     E = element type.
144     m = target matrix.
145 Returns:
146     LU decomposition matrices.
147 */
148 auto luDecomposition(size_t N, E)(auto scope ref const(Matrix!(N, N, E)) m) @nogc nothrow pure
149     if (isNumeric!E)
150 {
151     return LUDecomposition!(N, E)(m);
152 }
153 
154 ///
155 @nogc nothrow pure @safe unittest
156 {
157     import karasux.linear_algebra.matrix : isClose;
158     enum N = 4;
159 
160     immutable m = Matrix!(N, N).fromRows([
161         [5.0, 6.0, 7.0, 8.0],
162         [10.0, 21.0, 24.0, 27.0],
163         [15.0, 54.0, 73.0, 81.0],
164         [25.0, 84.0, 179.0, 211.0],
165     ]);
166     immutable lu = m.luDecomposition();
167 
168     immutable inverse = lu.createInverse();
169     auto result = typeof(lu).Mat();
170     result.mul(inverse, m);
171     assert(result.isUnitMatrix);
172 }
173 
174 ///
175 @nogc nothrow pure @safe unittest
176 {
177     import karasux.linear_algebra.vector : isClose;
178     enum N = 4;
179 
180     immutable m = Matrix!(N, N).fromRows([
181         [5.0, 6.0, 7.0, 8.0],
182         [10.0, 21.0, 24.0, 27.0],
183         [15.0, 54.0, 73.0, 81.0],
184         [25.0, 84.0, 179.0, 211.0],
185     ]);
186     immutable lu = m.luDecomposition();
187 
188     immutable y = typeof(lu).Vec([3.0, 5.0, 4.0, -5.0]);
189     immutable x = lu.solve(y);
190 
191     typeof(lu).Vec result;
192     result.mul(m, x);
193     assert(result.isClose(y));
194 }
195 
196 private:
197 
198 version(unittest)
199 {
200     bool isUnitMatrix(E, size_t N)(auto scope ref const(Matrix!(N, N, E)) m) @nogc nothrow pure @safe
201     {
202         import std.math : isClose;
203 
204         foreach (i; 0 .. N)
205         {
206             foreach (j; 0 .. N)
207             {
208                 if (!m[i, j].isClose((i == j) ? 1.0 : 0.0, 1e-4, 1e-4))
209                 {
210                     return false;
211                 }
212             }
213         }
214 
215         return true;
216     }
217 }
218 
219 /**
220 Create matrix pivots.
221 
222 Params:
223     m = target matrix.
224     pivots = pivots indicies.
225 */
226 void createPivots(size_t N, E)(
227     auto scope ref const(Matrix!(N, N, E)) m,
228     scope ref size_t[N] pivots)
229     if (isNumeric!E)
230 {
231     foreach (i, ref e; pivots)
232     {
233         e = i;
234     }
235 
236     foreach (i; 0 .. N)
237     {
238         size_t maxPos = i;
239         E maxValue = m[maxPos, i];
240         foreach (j; (i + 1) .. N)
241         {
242             immutable value = m[pivots[j], i];
243             if (maxValue < value)
244             {
245                 maxPos = j;
246                 maxValue = value;
247             }
248         }
249 
250         swap(pivots[i], pivots[maxPos]);
251     }
252 }
253 
254 ///
255 @nogc nothrow pure @safe unittest
256 {
257     enum N = 2;
258     alias Mat = Matrix!(N, N);
259 
260     size_t[N] pivots;
261     auto m = Mat.fromRows([
262         [1.0f, 2.0f],
263         [2.0f, 1.0f]]);
264 
265     m.createPivots(pivots);
266     assert(pivots == [1, 0]);
267 
268     m = Mat.fromRows([
269         [1.0f, 1.0f],
270         [2.0f, 3.0f]]);
271 
272     m.createPivots(pivots);
273     assert(pivots == [1, 0]);
274 }
275 
276 ///
277 @nogc nothrow pure @safe unittest
278 {
279     enum N = 3;
280     alias Mat = Matrix!(N, N);
281 
282     size_t[N] pivots;
283     auto m = Mat.fromRows([
284         [1.0f, 2.0f, 3.0f],
285         [2.0f, 1.0f, 4.0f],
286         [3.0f, 4.0f, 0.0f],
287     ]);
288 
289     m.createPivots(pivots);
290     assert(pivots == [2, 0, 1]);
291 }
292 
293 /**
294 LU decomposition.
295 
296 Params:
297     m = target matrix.
298     l = L destination matrix.
299     u = U destination matrix.
300 */
301 void createLUDecomposition(size_t N, E)(
302     auto scope ref const(Matrix!(N, N, E)) m,
303     scope ref Matrix!(N, N, E) l,
304     scope ref Matrix!(N, N, E) u)
305     if (isNumeric!E)
306 {
307     // initialize L first row.
308     l[0, 0] = E(1);
309     foreach (column; 1 .. N)
310     {
311         l[0, column] = E(0);
312     }
313 
314     // initialize U first row.
315     foreach (column; 0 .. N)
316     {
317         u[0, column] = m[0, column];
318     }
319 
320     auto m00 = m[0, 0];
321     foreach (row; 1 .. N)
322     {
323         // clear L fixed cells.
324         l[row, row] = E(1);
325         foreach (column; row + 1 .. N)
326         {
327             l[row, column] = E(0);
328         }
329 
330         // clear R fiexd cells.
331         foreach (column; 0 .. row)
332         {
333             u[row, column] = E(0);
334         }
335 
336         // setting up L first column.
337         l[row, 0] = m[row, 0] / m00;
338 
339         // calculate L columns.
340         foreach (column; 1 .. row)
341         {
342             E sum = E(0);
343             foreach (lc; 0 .. column)
344             {
345                 sum += l[row, lc] * u[lc, column];
346             }
347             l[row, column] = (m[row, column] - sum) / u[column, column];
348         }
349 
350         // calculate U columns.
351         foreach (column; row .. N)
352         {
353             E sum = E(0);
354             foreach (lc; 0 .. row)
355             {
356                 sum += l[row, lc] * u[lc, column];
357             }
358             u[row, column] = m[row, column] - sum;
359         }
360     }
361 }
362 
363 ///
364 @nogc nothrow pure @safe unittest
365 {
366     import karasux.linear_algebra.matrix : isClose;
367 
368     immutable m = Matrix!(2, 2).fromRows([
369         [4.0f, 3.0f],
370         [6.0f, 3.0f]]);
371     auto l = Matrix!(2, 2)();
372     auto u = Matrix!(2, 2)();
373     m.createLUDecomposition(l, u);
374 
375     assert(l.isClose(Matrix!(2, 2).fromRows([
376         [1.0, 0.0],
377         [1.5, 1.0]
378     ])));
379     assert(u.isClose(Matrix!(2, 2).fromRows([
380         [4.0, 3.0],
381         [0.0, -1.5]
382     ])));
383 
384     auto mul = Matrix!(2, 2)();
385     mul.mul(l, u);
386     assert(mul.isClose(m));
387 }
388 
389 @nogc nothrow pure @safe unittest
390 {
391     import karasux.linear_algebra.matrix : isClose;
392 
393     immutable m = Matrix!(3, 3).fromRows([
394         [5.0, 6.0, 7.0],
395         [10.0, 20.0, 23.0],
396         [15.0, 50.0, 67.0],
397     ]);
398     auto l = Matrix!(3, 3)();
399     auto u = Matrix!(3, 3)();
400     m.createLUDecomposition(l, u);
401     assert(l.isClose(Matrix!(3, 3).fromRows([
402         [1.0,  0.0,  0.0],
403         [2.0,  1.0,  0.0],
404         [3.0,  4.0,  1.0],
405     ])));
406     assert(u.isClose(Matrix!(3, 3).fromRows([
407         [5.0, 6.0,  7.0],
408         [0.0, 8.0,  9.0],
409         [0.0, 0.0, 10.0],
410     ])));
411 
412     auto mul = Matrix!(3, 3)();
413     mul.mul(l, u);
414     assert(mul.isClose(m));
415 }
416 
417 @nogc nothrow pure @safe unittest
418 {
419     import karasux.linear_algebra.matrix : isClose;
420 
421     immutable m = Matrix!(4, 4).fromRows([
422         [5.0, 6.0, 7.0, 8.0],
423         [10.0, 21.0, 24.0, 27.0],
424         [15.0, 54.0, 73.0, 81.0],
425         [25.0, 84.0, 179.0, 211.0],
426     ]);
427     auto l = Matrix!(4, 4)();
428     auto u = Matrix!(4, 4)();
429     m.createLUDecomposition(l, u);
430     assert(l.isClose(Matrix!(4, 4).fromRows([
431         [1.0,  0.0,  0.0, 0.0],
432         [2.0,  1.0,  0.0, 0.0],
433         [3.0,  4.0,  1.0, 0.0],
434         [5.0,  6.0,  7.0, 1.0],
435     ])));
436     assert(u.isClose(Matrix!(4, 4).fromRows([
437         [5.0, 6.0,  7.0, 8.0],
438         [0.0, 9.0, 10.0, 11.0],
439         [0.0, 0.0, 12.0, 13.0],
440         [0.0, 0.0,  0.0, 14.0],
441     ])));
442 
443     auto mul = Matrix!(4, 4)();
444     mul.mul(l, u);
445     assert(mul.isClose(m));
446 }
447 
448 /**
449 Inverse lower triangle matrix.
450 
451 Params:
452     N = matrix dimensions.
453     E = matrix element.
454     l = lower triangle matrix.
455     inverse = inverse matrix.
456 */
457 void inverseLMatrix(size_t N, E)(
458     scope ref const(Matrix!(N, N, E)) l,
459     scope ref Matrix!(N, N, E) inverse)
460     if (isNumeric!E)
461 {
462     // for each inverse element.
463     foreach (i; 0 .. N)
464     {
465         foreach (j; 0 .. i)
466         {
467             auto sum = E(0);
468             foreach (k; j .. i)
469             {
470                 sum += l[i, k] * inverse[k, j];
471             }
472 
473             inverse[i, j] = -(sum / l[i, i]);
474         }
475 
476         // diagonal element.
477         inverse[i, i] = E(1) / l[i, i];
478 
479         // fill uppder triangle elements to 0.
480         foreach (j; (i + 1) .. N)
481         {
482             inverse[i, j] = E(0);
483         }
484     }
485 }
486 
487 @nogc nothrow pure @safe unittest
488 {
489     enum N = 1;
490     alias Mat = Matrix!(N, N);
491 
492     immutable m = Mat.fromRows([[5.0]]);
493     auto inverse = Mat();
494     m.inverseLMatrix(inverse);
495 
496     auto result = Mat();
497     result.mul(inverse, m);
498     assert(result.isUnitMatrix);
499 }
500 
501 @nogc nothrow pure @safe unittest
502 {
503     enum N = 2;
504     alias Mat = Matrix!(N, N);
505 
506     immutable m = Mat.fromRows([
507         [5.0, 0.0],
508         [6.0, 7.0],
509     ]);
510     auto inverse = Mat();
511     m.inverseLMatrix(inverse);
512 
513     auto result = Mat();
514     result.mul(inverse, m);
515     assert(result.isUnitMatrix);
516 }
517 
518 @nogc nothrow pure @safe unittest
519 {
520     enum N = 3;
521     alias Mat = Matrix!(N, N);
522 
523     immutable m = Mat.fromRows([
524         [5.0, 0.0,  0.0],
525         [6.0, 7.0,  0.0],
526         [8.0, 9.0, 10.0],
527     ]);
528     auto inverse = Mat();
529     m.inverseLMatrix(inverse);
530 
531     auto result = Mat();
532     result.mul(inverse, m);
533     assert(result.isUnitMatrix);
534 }
535 
536 @nogc nothrow pure @safe unittest
537 {
538     enum N = 4;
539     alias Mat = Matrix!(N, N);
540 
541     immutable m = Mat.fromRows([
542         [5.0,  0, 0, 0],
543         [10.0, 21.0, 0, 0],
544         [15.0, 54.0, 73.0, 0],
545         [25.0, 84.0, 179.0, 211.0],
546     ]);
547     auto inverse = Mat();
548     m.inverseLMatrix(inverse);
549 
550     auto result = Mat();
551     result.mul(inverse, m);
552     assert(result.isUnitMatrix);
553 }
554 
555 /**
556 Inverse upper triangle matrix.
557 
558 Params:
559     N = matrix dimensions.
560     E = matrix element.
561     l = upper triangle matrix.
562     inverse = inverse matrix.
563 */
564 void inverseUMatrix(size_t N, E)(
565     scope ref const(Matrix!(N, N, E)) u,
566     scope ref Matrix!(N, N, E) inverse)
567     if (isNumeric!E)
568 {
569     // for each inverse element in reverse order.
570     foreach_reverse (i; 0 .. N)
571     {
572         // fill lower triangle elements to 0.
573         foreach (j; 0 .. i)
574         {
575             inverse[i, j] = E(0);
576         }
577 
578         // diagonal element.
579         inverse[i, i] = E(1) / u[i, i];
580 
581         foreach (j; (i + 1) .. N)
582         {
583             auto sum = E(0);
584             foreach_reverse (k; (i + 1) .. (j + 1))
585             {
586                 sum += u[i, k] * inverse[k, j];
587             }
588 
589             inverse[i, j] = -(sum / u[i, i]);
590         }
591     }
592 }
593 
594 @nogc nothrow pure @safe unittest
595 {
596     enum N = 1;
597     alias Mat = Matrix!(N, N);
598 
599     immutable m = Mat.fromRows([[5.0]]);
600     auto inverse = Mat();
601     m.inverseUMatrix(inverse);
602 
603     auto result = Mat();
604     result.mul(inverse, m);
605     assert(result.isUnitMatrix);
606 }
607 
608 @nogc nothrow pure @safe unittest
609 {
610     enum N = 2;
611     alias Mat = Matrix!(N, N);
612 
613     immutable m = Mat.fromRows([
614         [5.0, 6.0],
615         [0.0, 7.0],
616     ]);
617     auto inverse = Mat();
618     m.inverseUMatrix(inverse);
619 
620     auto result = Mat();
621     result.mul(inverse, m);
622     assert(result.isUnitMatrix);
623 }
624 
625 @nogc nothrow pure @safe unittest
626 {
627     enum N = 3;
628     alias Mat = Matrix!(N, N);
629 
630     immutable m = Mat.fromRows([
631         [5.0, 4.0,  3.0],
632         [0.0, 7.0,  8.0],
633         [0.0, 0.0, 10.0],
634     ]);
635     auto inverse = Mat();
636     m.inverseUMatrix(inverse);
637 
638     auto result = Mat();
639     result.mul(inverse, m);
640 
641     assert(result.isUnitMatrix);
642 }
643 
644 @nogc nothrow pure @safe unittest
645 {
646     enum N = 4;
647     alias Mat = Matrix!(N, N);
648 
649     immutable m = Mat.fromRows([
650         [2.0, 5.0, 4.0,  3.0],
651         [0.0, 7.0, 8.0,  1.0],
652         [0.0, 0.0, 10.0, 5.0],
653         [0.0, 0.0, 0.0,  5.0],
654     ]);
655     auto inverse = Mat();
656     m.inverseUMatrix(inverse);
657 
658     auto result = Mat();
659     result.mul(inverse, m);
660     assert(result.isUnitMatrix);
661 }
662 
663 /**
664 Solve equation by L matrix.
665 */
666 void solveByLMatrix(size_t N, E)(
667     auto scope ref const(Matrix!(N, N, E)) l,
668     auto scope ref const(Vector!(N, E)) y,
669     ref Vector!(N, E) x)
670 {
671     foreach (i; 0 .. N)
672     {
673         E sum = E(0);
674         foreach (j; 0 .. i)
675         {
676             sum += l[i, j] * x[j];
677         }
678 
679         x[i] = (y[i] - sum) / l[i, i];
680     }
681 }
682 
683 @nogc nothrow pure @safe unittest
684 {
685     import karasux.linear_algebra.vector : isClose;
686 
687     enum N = 1;
688     alias Mat = Matrix!(N, N, double);
689     alias Vec = Vector!(N, double);
690 
691     immutable m = Mat.fromRows([
692         [3.0],
693     ]);
694     immutable y = Vec([12.0]);
695     Vec x;
696     m.solveByLMatrix(y, x);
697 
698     assert(x.isClose(Vec([4.0])));
699 }
700 
701 @nogc nothrow pure @safe unittest
702 {
703     import karasux.linear_algebra.vector : isClose;
704 
705     enum N = 2;
706     alias Mat = Matrix!(N, N, double);
707     alias Vec = Vector!(N, double);
708 
709     immutable m = Mat.fromRows([
710         [3.0, 0.0],
711         [4.0, 5.0],
712     ]);
713     immutable y = Vec([9, 3]);
714     Vec x;
715     m.solveByLMatrix(y, x);
716 
717     assert(x.isClose(Vec([3.0, -9.0 / 5.0])));
718 }
719 
720 /**
721 Solve equation by U matrix.
722 */
723 void solveByUMatrix(size_t N, E)(
724     auto scope ref const(Matrix!(N, N, E)) l,
725     auto scope ref const(Vector!(N, E)) y,
726     ref Vector!(N, E) x)
727 {
728     foreach_reverse (i; 0 .. N)
729     {
730         E sum = E(0);
731         foreach_reverse (j; (i + 1) .. N)
732         {
733             sum += l[i, j] * x[j];
734         }
735 
736         x[i] = (y[i] - sum) / l[i, i];
737     }
738 }
739 
740 @nogc nothrow pure @safe unittest
741 {
742     import karasux.linear_algebra.vector : isClose;
743 
744     enum N = 2;
745     alias Mat = Matrix!(N, N, double);
746     alias Vec = Vector!(N, double);
747 
748     immutable m = Mat.fromRows([
749         [3.0, 4.0],
750         [0.0, 5.0],
751     ]);
752     immutable y = Vec([9, 3]);
753     Vec x;
754     m.solveByUMatrix(y, x);
755 
756     assert(x.isClose(Vec([2.2, 0.6])));
757 }
758